GTEngine: Arbitrary Precision Arithmetic

نویسنده

  • David Eberly
چکیده

3 Binary Scientific Numbers 9 3.1 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2.1 The Case p− n > q −m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2.2 The Case p− n < q −m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2.3 The Case p− n = q −m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2.4 Determining the Maximum Number of Bits for Addition . . . . . . . . . . . . . . . . . 11 3.3 Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4 Unsigned Integer Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4.1 Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4.2 Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.4.3 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.4.4 Shift Left . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4.5 Shift Right to Odd Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4.6 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.5 Conversion of Floating-Point Numbers to Binary Scientific Numbers . . . . . . . . . . . . . . 21

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Convolve-And-MErge Approach for Exact Computations on High-Performance Reconfigurable Computers

This work presents an approach for accelerating arbitrary-precision arithmetic on high-performance reconfigurable computers (HPRCs). Although faster and smaller, fixed-precision arithmetic has inherent rounding and overflow problems that can cause errors in scientific or engineering applications. This recurring phenomenon is usually referred to as numerical nonrobustness. Therefore, there is an...

متن کامل

Implementation and application of extended precision in Matlab

A multiple precision library for floating-point calculations to any number of digits has been implemented in Matlab. The library is based on the ARPREC library. One application is discussed in detail, namely the evaluation in the complex plane of special functions in regions of bad conditioning. Through the use of Matlab classes, all the basic arithmetic operations are accessible using Matlab s...

متن کامل

Stochastic Arithmetic in Multiprecision

Floating-point arithmetic precision is limited in length the IEEE single (respectively double) precision format is 32-bit (respectively 64-bit) long. Extended precision formats can be up to 128-bit long. However some problems require a longer floating-point format, because of round-off errors. Such problems are usually solved in arbitrary precision, but round-off errors still occur and must be ...

متن کامل

Arithmetic coding for finite-state noiseless channels

We analyze the expected delay for infinite precision arithmetic codes, and suggest a practical implementation that closely approximates the idealized infinite precision model.

متن کامل

Computing the Lambert W function in arbitrary-precision complex interval arithmetic

We describe an algorithm to evaluate all the complex branches of the LambertW function with rigorous error bounds in interval arithmetic, which has been implemented in the Arb library. The classic 1996 paper on the Lambert W function by Corless et al. provides a thorough but partly heuristic numerical analysis which needs to be complemented with some explicit inequalities and practical observat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017