GTEngine: Arbitrary Precision Arithmetic
نویسنده
چکیده
3 Binary Scientific Numbers 9 3.1 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2.1 The Case p− n > q −m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2.2 The Case p− n < q −m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2.3 The Case p− n = q −m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2.4 Determining the Maximum Number of Bits for Addition . . . . . . . . . . . . . . . . . 11 3.3 Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4 Unsigned Integer Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4.1 Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4.2 Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.4.3 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.4.4 Shift Left . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4.5 Shift Right to Odd Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4.6 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.5 Conversion of Floating-Point Numbers to Binary Scientific Numbers . . . . . . . . . . . . . . 21
منابع مشابه
A Convolve-And-MErge Approach for Exact Computations on High-Performance Reconfigurable Computers
This work presents an approach for accelerating arbitrary-precision arithmetic on high-performance reconfigurable computers (HPRCs). Although faster and smaller, fixed-precision arithmetic has inherent rounding and overflow problems that can cause errors in scientific or engineering applications. This recurring phenomenon is usually referred to as numerical nonrobustness. Therefore, there is an...
متن کاملImplementation and application of extended precision in Matlab
A multiple precision library for floating-point calculations to any number of digits has been implemented in Matlab. The library is based on the ARPREC library. One application is discussed in detail, namely the evaluation in the complex plane of special functions in regions of bad conditioning. Through the use of Matlab classes, all the basic arithmetic operations are accessible using Matlab s...
متن کاملStochastic Arithmetic in Multiprecision
Floating-point arithmetic precision is limited in length the IEEE single (respectively double) precision format is 32-bit (respectively 64-bit) long. Extended precision formats can be up to 128-bit long. However some problems require a longer floating-point format, because of round-off errors. Such problems are usually solved in arbitrary precision, but round-off errors still occur and must be ...
متن کاملArithmetic coding for finite-state noiseless channels
We analyze the expected delay for infinite precision arithmetic codes, and suggest a practical implementation that closely approximates the idealized infinite precision model.
متن کاملComputing the Lambert W function in arbitrary-precision complex interval arithmetic
We describe an algorithm to evaluate all the complex branches of the LambertW function with rigorous error bounds in interval arithmetic, which has been implemented in the Arb library. The classic 1996 paper on the Lambert W function by Corless et al. provides a thorough but partly heuristic numerical analysis which needs to be complemented with some explicit inequalities and practical observat...
متن کامل